Photon Phun Workshop 4

Note: U.S copyright law (title 17 of U.S. code) governs the reproduction and redistribution of copyrighted material. All copyrighted images included in this presentation are for educational use only should not be copied or redistributed.

Financial support by National Science Foundation

Photon Phun Workshop 4

Color Mixing
Prof. Katsuyo Thornton, Prof. Liang Qi,
Prof. John Heron, and Jason Luce
Dept. of Materials Science and Engineering
Univ. of Michigan
Presented at Scarlett Middle School

Financial support by National Science Foundation

What will we learn today?

* How do we see colors of light?
* Components of white light (demo)
* Primary colors that adds to white light
* Additive color mixing (Activity \#1)
* Why does a red apple appear red?

Recap from Last Time

* Refraction

- When light hits a transparent material, it changes the direction if the index of fraction is different
- This is how lenses work (including our eyes)

Concave and Convex Lenses

Convex \& Concave Lens Activity

https://researchthetopic.wikispaces.com/
What+are+concave+and+convex+lenses\% $3 \mathrm{~F}+\mathrm{Part}+2$

Convex \& Concave Lens Activity

* You have a concave \& convex lenses
* Look at each one and see what you see
* Next stack them up; be careful not to scratch!
*What do you see?
* You have a concave \& convex lenses
* Look at each one and see what you see

Convex \& Concave Lens Activity

* You have a concave \& convex lenses
* Look at each one and see what you see
* Next stack them up; be careful not to scratch!
* What do you see?
* They neutralize each other!

Review/Summary: What's in white light?

* White light has multiple colors in it!
* You can make a white light by shining red light, blue light, and green light on a spot!
* You can split white light into multiple colors! (Workshop \#2)

How do we mix colors? Additive primary colors

* Additive = they add up * When you mix the red light, green light, and blue light, you get white
RGB: Red, Green, Blue primary color system: mixing red, green, and blue in different proportion creates a wide range of colors

Image: https://en.wikipedia.org/wiki/Color_mixing

Summary:

How do we see colors?

* The image is focused by the lens onto the "screen"
* The "screen" has receptors that are more sensitive to specific colors (cone cells)

Cone type Sensitivity range "Nickname"

S-cone $400-500 \mathrm{~nm} \quad$ Blue receptor
M-cone $450-630 \mathrm{~nm}$ Green receptor

L-cone 500-700 nm Red receptor

Activity \#1

* Put tiny water droplet(s) - less than 1 mm - on the plastic sheet provided (to make a magnifier)
* Turn up your parent/coach's phone brightness and look at different colors
* Fill out the worksheet page 1

Screens

* Screens are made of little dots ("pixels" from picture cells) of colors

"Droplet magnifiers" on my computer screen

Left image: https://en.wikipedia.org/wiki/Pixel

Review: What happens when light hit a material?

* Reflect (session 1)
* Transmitted \& refract (session 3)

Absorption of Light

* Some light has just the right energy to cause electrons in molecules to jump to a higher energy state
- Refraction (bending) when index is different
* Absorbed (not reflected; not
* The photon energy gets converted to vibration of the atoms

Why does a red apple look red?

* White light has all colors in it
* White light hit the apple, and only red colors bounce back ("reflect")!
* Other colors are absorbed into the apple

Image of apple from Wikipedia

RGB System

Red pigment

Blue pigment

* What's the problem with mixing these colors?

Subtractive color mixing

* When you mix pigments, you are mixing chemicals that absorb colors
* By mixing different pigments, you are actually subtracting colors, rather than adding

Blue and green are absorbed, or subtracted from white light!

Think about an example...

* In this thought-experiment, assume the pigments are perfect absorbers

Think about an example...

* Red pigments absorb blue and green light, and blue pigments absorb green and red light, so no light will come off the surface!

What do you actually see?

* Activity \#2: Color mixing of red and blue paint

What do you actually see?
Why do you see dark purple, not black?

* Dark purple!
* Depending on how much of each is mixed, you may see more blue or red shades

Why do you see dark purple, not black?

* This is because the pigments are not perfect absorbers
* Although red pigments mostly reflect red light, there are still some other colors that you don't detect because its overwhelmed by the red light

Problem with using RGB as primary colors for pigments

* Since each color absorbs two (not one) of the colors, you CANNOT generate a wide range of colors!

Solution

* Can we come up with colors that only lacks one of the color component, R , G, or B?
* Yes! Cyan, Magenta, Yellow (CMY system)!

Yellow

Cyan

Magenta

CMY System: A prime color only takes out one color

Activity \#3: Color mixing with CMY

* Obtain the plate with cyan, magenta, and yellow paint
* Mix about equal amounts of each combination, and describe the resulting color
* Fill out the worksheet

Color Paddles \& Transmission

* Color paddles have sheets that transmit only certain colors
* Example: a red paddle

Notice a pattern?

RGB and CMY are complementary colors!
Th https://www.d.umn.edu/~mharvey/th1501 color.html

Complimentary colors

* Complimentary colors are colors of

 light that adds up to whiteFor primary colors:

- Red \& Cyan
- Blue \& Yellow
- Green \& Magenta

Complimentary colors

* Complimentary colors are colors of light that adds up to white

Which colors are complementary?

Takeaway...

* White light is composed of multiple colors
* Red, blue, and green light add to white (light is additive; additive color mixing)
* Pigments of cyan (red absorber), magenta (green absorber), and yellow (blue absorber) can mix to generate a wide range of colors (pigments subtract light of certain colors; subtractive color mixing)
* Colored cellophane sheets (on color paddles) work the same way as the pigments, but what you see is transmitted, rather than reflected

Thank you for your attention and support for science education!

Questions?

Work supported by Division of Materials Research, Condensed Matter and Materials Physics Program

Activity Materials

* Activity 1: Heavyweight vinyl envelopes or clear plastic snack bag, a phone or computer screen
* Activity 2 \& 3: Washable non-toxic paint, paper plates, cup of water, and paper towels for cleanup
* Activity 4: Flashlight \& color paddles

Supplementary Materials for Coaches and Parents

